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Abstract

A technique, based upon abstract interpretation, is presented that allows general
gate-level combinational asynchronous circuits with uncertain delay characteristics
to be reasoned about. Our approach is particularly suited to the simulation and
model checking of circuits where the identification of possible glitch states (static
and dynamic hazards) is required.

We present a concrete model based upon signals represented as (possibly nonde-
terministic) functions from absolute dense time to the Booleans, and a hierarchy
of achronous abstractions linked by Galois connections, each model offering vary-
ing tradeoffs between accuracy and complexity. Many of these abstract domains
resemble extended, multi-value logics: transitional logics that include extra values
representing transitions as well as steady states, and static/clean logics that include
the values S and C representing ‘unknown but fixed for all time’ and ‘can never
glitch’ respectively.

Our framework captures several pre-existing analyses as particular instances in
the hierarchy of abstractions.

Key words: Abstract interpretation; asynchronous circuits; transitional logics;
multi-value logics; achronous analysis

1 Introduction

Most contemporary design approaches assume an underlying synchronous
paradigm, where a single global signal drives the clock inputs of every flip flop
in the circuit. As a consequence, nearly all synthesis, simulation and model
checking tools assume synchronous semantics. Designs in which this rule is
relaxed are generally termed asynchronous circuits .
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Fig. 1. Comparison of dynamic behaviour

In a synchronous model, glitches (also known as static and dynamic hazards)
do not cause problems unless they occur on a wire used as a clock input; with
purely synchronous design rules 1 this can not occur. However, such safety
restrictions are not enforced by the semantics of either Verilog or VHDL – it
is quite easy, deliberately or otherwise, to introduce unsafe logic into a clock
path.

We present a technique, based upon abstract interpretation [4,5], that allows
the glitch states of asynchronous circuits to be identified and reasoned about.
The approach taken involves a family of extended, multi-value transitional
logics with an underlying dense continuous time model, and has applications
in synthesis, simulation and model checking.

1 Exactly one hazard-free global clock driving the clock inputs of all flip flops in
the circuit.
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Our logics are extended with extra values that capture transitions as well
as steady states, with an ability to distinguish clean, glitch-free signals from
dirty , potentially glitchy ones. As a motivating example, consider the circuits
shown in Fig. 1.i and 1.ii, represented respectively by the expressions (a∧c)∨
(¬a ∧ b) and (a ∧ c) ∨ (¬a ∧ b) ∨ (b ∧ c). With respect to steady-state values
for a, b and c, both circuits would appear to be identical, with the former
representing a circuit that might result from näıve optimisation of the latter.
Our technique can straightforwardly illustrate differences in their dynamic
behaviour, however. Consider the critical case a = ↑0 and b = c = T0 (see
Fig. 1.iii), representing b and c being wired to true for all time, and a clean
transition from false to true on a (this notation is defined fully in Section 3):

(a ∧ c) ∨ (¬a ∧ b) (a ∧ c) ∨ (¬a ∧ b) ∨ (b ∧ c)

= (↑0 ∧ T0) ∨ (¬↑0 ∧ T0) = (↑0 ∧ T0) ∨ (¬↑0 ∧ T0) ∨ (T0 ∧ T0)

= ↑0 ∨ ↓0 = ↑0 ∨ ↓0 ∨ T0

= T0..1 (i) = T0 (ii)

The result T0 may be interpreted as ‘true for all time, with no glitches’.
However, T0..1 represents ‘true with zero or one glitches’, clearly demonstrating
the poorer dynamic behaviour of the smaller circuit.

1.1 Achronous Analysis

Our transitional logics are all achronous, in that they do not consider ab-
solute timing information, though they are nevertheless capable of reasoning
about hazards in asynchronous circuits. More formally, an achronous analysis
adopts an independent attribute model, whereby signals are considered sepa-
rately without regard to absolute time. In contrast, a non-achronous analysis
may take into account absolute time. For example, given two signals s1 that
transitions cleanly from 1 to 0 at time 5.0 and s1 that transitions cleanly from
0 to 1 at time 7.5, a non-achronous analysis of s1 ∧ s2 could determine that
the result is ‘0 for all time’, whereas an achronous analysis (since it must by
definition disregard absolute time) must conclude that the result may either
be 0 for all time or a single positive pulse.
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1.2 Hardware Components

In this paper we consider four 2 basic building blocks: (perfect – zero de-
lay) AND-gates, (perfect) NOT-gates, delay elements (whose delays may de-
pend on time, and environmental factors like temperature, and thus are non-
deterministic in a formal sense), and inertial delay elements. The difference
between an ordinary delay and an inertial delay is that in the former the
number of transitions on its input and output are equal, but in the latter a
short-duration pulse from high-to-low and back (or vice versa) may be removed
entirely from the output.

Of course, real circuits are not so general, in particular no practically realisable
circuit of non-zero size can have zero-delay. Hence real-life circuits all corre-
spond to combinations of the above gates with some form of delay element.
For the point of designing synchronous hardware all that matters is the max-
imum delay which can occur from a circuit, so the exact positioning of the
delays is often of little importance. When circuits are used asynchronously
(e.g. for designing self-timed circuits without a global clock or, more pro-
saically, when their output is being used to gate a clock signal locally) then
their glitch behaviour is often critically important. This leads to two models
(the delay-insensitive (DI) and speed-independent (SI) models) of real hard-
ware. In the SI model logic elements may have delays, but wires do not; in
the DI model both logic elements and wires have associated delay. One well-
known fact about DI models is that it is impossible to construct an isochronic
fork, whereby the transitions in output from a given gate will arrive delayed
contemporaneously at two other gates. Reasoning in the DI model has become
much more important recently as wire delays (e.g. due to routing) have become
dominant over single-gate element delays in modern VLSI technologies [17].

Ordinary circuits may be embedded in our model as follows. In the SI model
each physical logic gate at the hardware level is seen as a perfect logic gate
whose output is then passed through a delay element. In the DI model, each
physical logic gate is seen as a perfect logic gate whose input(s) first pass
through separate delays. In essence, the SI and DI models of a circuit are
translations of a physical circuit into idealised circuits composed solely of our
four perfect elements.

Now consider the circuit in Fig. 2.i. Seen as a perfect logic element, its output
is always false regardless of the value of its input signal. Seen as an SI circuit
(i.e. delays on the output of the AND and NOT, as shown in Fig. 2.ii), given
an input F1 which starts at false then transitions to true and back, the circuit
will be false at all times except (possibly) for a small period just after the

2 A perfect OR-gate can be constructed from perfect AND- and NOT-gates using
de Morgan’s law.
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Fig. 2. Delay models of the circuit a ∧ ¬a

rising edge of the input, when the upper AND-input will already be true, but
before the delayed NOT-output has yet become false. Thus the output, at this
level of modelling, is F0..1 – an unpredictable choice between F0 and F1 – if we
assume an inertial delay and F1 if we assume a non-inertial delay 3 .

In contrast, Fig. 2.iii illustrates the DI model, where the separate delays on
both inputs to the AND-gate mean that the same input signal F1 may result
in small positive pulses on both the rising and falling edge of the input; thus
the output is described as F0..2 (i.e. F0 or F1 or F2). It is important to note
that any of these three possible outputs may occur; delays may vary with time
and temperature, and can also differ on whether an input signal is rising or
falling.

Our abstract interpretation framework enables us to formally deduce the above
behaviours of the circuit shown in Fig. 2. Our reasoning is correct, because of
the abstract interpretation framework. In some situations our reasoning is also
complete in that all abstractly-predicted behaviours may be made to happen
by choosing suitable delay functions for the delay elements. For example, in
the DI model, our abstraction of the above circuit maps abstract signal F1 onto
F0..2, but the SI model cannot produce F2 however (positive) delay intervals
are chosen.

3 This argument assumes positive delays; at times later in the paper we also allow
(non-physically realisable) delays by negative time.
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a ∧ b Perfect (zero delay) AND

a ∨ b Perfect OR

¬a Perfect NOT

∆a Transmission line delay

�a Inertial delay

Fig. 3. Circuit Symbols

1.3 Abstract Interpretation Basis

In general in abstract interpretation we start with a most precise abstract
model from which we make further abstractions which are guaranteed correct
by the abstract interpretation formulation. Our most precise model, ℘(S),
represents signals on wires as sets of functions from dense real time to the
Booleans. Nondeterminism is captured straightforwardly – given a signal ŝ ∈
℘(S), a particular (deterministic) waveform s is represented by ŝ if and only
if s ∈ ŝ.

Our most precise abstract model is constructed by removing absolute timing
information from signals in ℘(S), resulting in values in ℘(T). Operators on
℘(T) are sound with respect to their concrete counterparts, so analyses carried
out within our abstract framework are guaranteed to encompass all possible
timing relationships, including any possible best- and worst-case behaviours.
This has advantages and disadvantages: it means that we may predict multiple
possible behaviours, some of which may not be possible in reality due to
concrete timing constraints, though our predictions are always safe. Much
related work makes a similar assumption – see Section 8 for further discussion.

1.4 Paper Structure

In Section 2 we define a concrete domain that models signals as (possibly non-
deterministic) functions from time to the Boolean values. Section 3 describes
the most accurate (though complex) of our abstract domains; Sections 5 and 6
show how this can be further abstracted. Section 4 defines the operators nec-
essary to model circuits, Section 4.1 discusses soundness and completeness of
these operators. Refinement and equivalence relations are discussed in Sec-
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tion 7. Section 8 discusses how our abstract interpretation-based approach
enables various previous analyses to be seen as instances of our framework.
Section 9 concludes and discusses further work.

2 Concrete Domain

Definition 2.1 Concrete time R is continuous, linear and dense, having no
beginning or end.

Definition 2.2 A signal is a total function in S : R → {0, 1} from concrete
time to the Boolean values. More precisely, we restrict S to those functions that
are finitely piecewise constant 4 , i.e. there exists {k1, . . . , kn} which uniquely
determines, and is determined by, a signal s ∈ S such that

s(ki) = ¬s(ki+1) ∀1 ≤ i < n;

s(x) = s(ki) ∀ki ≤ x < ki+1;

s(−∞) = s(x) = ¬s(k1) ∀x < k1;

s(+∞) = s(x) = s(kn) ∀x ≥ kn.

The function Ψs
def
= {k1, . . . , kn} represents the bijection which returns the set

of times at which signal s has transitions; |Ψs| represents the total number,
n, of transitions made by s. As a further notational convenience, we denote
the values of s at the beginning and end of time respectively as s(−∞) and
s(+∞).

We model nondeterministic signals as members of the set ℘(S); e.g. delaying
signal s by time δ, where δmin ≤ δ ≤ δmax , gives {λτ.s(τ − δ) | δmin ≤ δ ≤
δmax}.

4 Note that we do not consider signals that contain an infinite number of transitions,
e.g. clocks that oscillate for all time. We can, however, reason about such signals by
‘windowing’ them within finite intervals (windows) [p, q] of R, resulting in signals
that are themselves finitely piecewise constant.
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3 Abstract Domain

3.1 Deterministic Traces

Definition 3.1 A deterministic trace t ∈ T characterises a deterministic sig-
nal s ∈ S, retaining the transitions but abstracting away the times at which
they occur. Traces are denoted as finite lists of Boolean values bounded by an-
gle brackets ‘〈. . . 〉’, and must contain at least one element – the empty trace
‘〈〉’ is not syntactically valid.

A singleton trace, denoted 〈0〉 or 〈1〉, represents a signal that remains at 0 or 1
respectively for all time. For traces with two or more elements, e.g. 〈a, . . . , b〉,
a is the value at the beginning of time and b is the value at the end of time.

The trace 〈0, 1, 0〉 represents a signal that at the start of time takes the value
0, then at some later time switches cleanly to 1, then back to 0 again before
the end of time. The instants at which these transitions occur are undefined,
although their time order must be preserved.

Values within traces may be discriminated only by their transitions. Therefore,
the trace 〈0, 0, 0, 0, 1, 1, 1〉 is equivalent to the trace 〈0, 1〉. It follows from this
that all traces may be reduced to a form that resembles an alternating sequence
〈. . . , 0, 1, 0, 1, 0, 1, . . . 〉. Any such sequence can be completely characterised by
its start and end values, along with the number of intervening full cycles 5 .
A convenient shorthand notation that takes advantage of this is defined in
Fig. 4.

3.2 Nondeterministic Traces

Following the approach taken in Section 2.2, we represent nondeterministic
traces t̂ ∈ ℘(T) as sets of deterministic traces 6 .

The need for this extra structure is demonstrated by the following example.
Let us attempt to specify the meaning of the expression 〈0, 1〉∧¬〈0, 1〉, which
represents the effect of feeding a clean transition from 0 to 1 to the a input of

5 It is of course also possible to represent traces completely in terms of their first
(or last) element and their length. However, the representation chosen here turns
out to be more convenient, e.g. comparing ↑0 with ↑4 makes it immediately obvious
that both represent traces that eventually transition from 0 to 1, with ↑0 being
‘cleaner’ than ↑4. The utility of this approach will become clear later.
6 We adopt the convention that t and t̂ are separate variables that range over T

and ℘(T) respectively.
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the circuit shown in Fig. 2. The ¬ can be evaluated trivially, giving 〈0, 1〉 ∧
〈1, 0〉. At first sight, it may appear that the resulting trace should be 〈0, 0〉 or
just 〈0〉. This would be the case if certain constraints on the exact times of
the transitions of the 〈1, 0〉 and 〈0, 1〉 traces were met, but it is not sufficient
to cope with all possibilities. If the 〈1, 0〉 transition occurs before the 〈0, 1〉
transition, then the result is indeed 〈0〉. Should the transitions occur in the
opposite order, the result is 〈0, 1, 0〉. Formally,

{〈0, 1〉} ∧ ¬{〈0, 1〉} = {〈0, 1〉} ∧ {〈1, 0〉} = {〈0〉} ∪ {〈0, 1, 0〉} = {〈0〉, 〈0, 1, 0〉}

Definition 3.2 Where t̂ ∈ ℘(T) and û ∈ ℘(T), the nondeterministic choice
t̂ | û is synonymous with t̂ ∪ û. For notational compactness, we allow either
or both of the arguments of | to range over T, e.g. where t ∈ T, the expression
t | û is equivalent to {t} | û.
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F0 The trace 〈0〉 that is 0 for all time.

F1 1
The trace 〈0, 1, 0〉 that has 0 at the beginning and end,
containing exactly one pulse.

F2 1 2
The trace 〈0, 1, 0, 1, 0〉 that begins and ends with 0, contain-
ing exactly two pulses.

Fn 1 2 n

The trace 〈0, 11, 0, 12, 0, . . . , 0, 1n, 0〉 that begins and ends
with 0, containing exactly n positive-going pulses.

T0 The trace 〈1〉 that is 1 for all time.

T1 1
The trace 〈1, 0, 1〉 that has 1 at the beginning and end,
containing exactly one pulse.

T2 1 2
The trace 〈1, 0, 1, 0, 1〉 that begins and ends with 1, contain-
ing exactly two pulses.

Tn 1 2 n
The trace 〈1, 01, 1, 02, 1, . . . , 1, 0n, 1〉 that begins and ends
with 1, containing exactly n negative-going pulses.

↑0 The trace 〈0, 1〉 that cleanly transitions from 0 to 1.

↑1 1
The trace 〈0, 1, 0, 1〉 that transitions from 0 to 1 through
exactly one intervening cycle.

↑2 1 2
The trace 〈0, 1, 0, 1, 0, 1〉 that transitions from 0 to 1 through
exactly two intervening cycles.

↑n 1 2 n

The trace 〈0, 11, 0, . . . , 0, 1n, 0, 1〉 that transitions from 0 to
1 through exactly n intervening cycles.

↓0 The trace 〈1, 0〉 that cleanly transitions from 1 to 0.

↓1 1
The trace 〈1, 0, 1, 0〉 that transitions from 1 to 0 through
exactly one intervening cycle.

↓2 1 2
The trace 〈1, 0, 1, 0, 1, 0〉 that transitions from 1 to 0 through
exactly two intervening cycles.

↓n
1 2 n

The trace 〈1, 01, 1, . . . , 1, 0n, 1, 0〉 that transitions from 1 to
0 through exactly n intervening cycles.

Fig. 4. Shorthand Notation: Deterministic Traces
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The ‘|’ operator allows the above equation to be expressed more compactly as
follows:

〈0, 1〉 ∧ ¬〈0, 1〉 = 〈0, 1〉 ∧ 〈1, 0〉 = 〈0〉 | 〈0, 1, 0〉

Using the shorthand notation, this may equivalently be written as:

↓0 ∧ ¬↓0 = ↓0 ∧ ↑0 = F0 | F1

Definition 3.3 Letting X range over {T, F, ↑, ↓},

Xm..n
def
=

n
⋃

i=m

{Xi} Xa1|...|an

def
= Xa1

| . . . | Xan

For example, F0 | F1 may equivalently be written as F0|1, and rather than fully
enumerating a long list of alternate pulse counts of the form Fm|m+1|...|n−1|n,
the preferred notation Fm..n may be used instead. These notations may be
combined, e.g. F0|3|5..7|10..12.

Nondeterministic choice obeys all the laws of set union, e.g.

a | a = a a | b = b | a a | (b | c) = (a | b) | c = a | b | c

From this, various subscript laws follow, e.g.

Xa|a = Xa Xa..a = Xa

Xa..b | Xc..d =







Xmin(a,c)..max(b,d) if c ≤ b ∧ a ≤ d;

Xa..b|c..d otherwise.

Definition 3.4 It is convenient to name the following least upper bounds
w.r.t. 〈℘(T),⊆〉:

FF

def
=

⋃

n∈N

{Fn} TF

def
=

⋃

n∈N

{Tn} ↑F

def
=

⋃

n∈N

{↑n} ↓F

def
=

⋃

n∈N

{↓n}

F
def
= FF ∪ TF ∪ ↑F ∪ ↓F

3.3 Galois Connection

In program analysis, it is common practice to relate partially ordered concrete
and abstract domains with concretisation γ and abstraction α functions that
together form a Galois connection. In this section, we define α and γ functions
that relate the domains defined earlier, then show that they form a valid Galois
connection.

Definition 3.5 Given a deterministic concrete signal s ∈ S, the abstraction
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function β : S → T returns the corresponding deterministic trace:

βs
def
= 〈s(−∞), s(k1), . . . , s(kn)〉 where {k1, . . . , kn} = Ψs

= 〈s(−∞),¬s(−∞), s(−∞),¬s(−∞), . . . 〉

Note that βs has exactly 1 + |Ψs| elements.

Definition 3.6 The abstraction function α : ℘(S) → ℘(T) and concretisation
function γ : ℘(T) → ℘(S) are defined as follows:

αŝ
def
= {βs | s ∈ ŝ} γt̂

def
= {s ∈ S | βs ∈ t̂}

Definition 3.7 Letting ∼: S× S → B represent the equivalence relation s1 ∼

s2 ⇔ βs1 = βs2, the set S
] def

= S/∼ is the set of equivalence classes in S with

respect to ∼. The set [s]
def
= {s′ ∈ S | βs = βs′} represents, for any s ∈ S, the

equivalence class containing that element.

Note that S
] is isomorphic with T.

Theorem 1 Together, the adjoint functions 〈α, γ〉 form a Galois connection
between ℘(S) and ℘(T). Following Cousot & Cousot [5], Theorem 5.3.0.4 and
Corollary 5.3.0.5, pp. 273, it is sufficient to show that α ◦ γ(x̂) v x̂ and
γ ◦ α(x̂) w x̂. We choose to prove instead the slightly stronger α ◦ γ(x̂) = x̂,
and since the ordering relations on ℘(S) and ℘(T) are subset inclusion, we
write ⊇ rather than w. Proof; letting x̂ = {x1, . . . , xn}

(1) α ◦ γ(x̂) = α{s ∈ S | βs ∈ x̂} = {βs′ | s′ ∈ {s ∈ S | βs ∈ x̂}} = {βs′ |
βs ∈ x̂} = x̂.

(2) γ◦α(x̂) = γ◦α{x1, . . . , xn} = γ{βx1, . . . , βxn} = γ{βx1}∪· · ·∪γ{βxn} =
{s ∈ S | βs = β{x1}} ∪ · · · ∪ {s ∈ S | βs = β{xn}} = [x1] ∪ · · · ∪ [xn] ⊇
{x1, . . . , xn} = x̂.
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∧] F0 Fn T0 Tn ↑0 ↑n ↓0 ↓n

F0 F0 F0 F0 F0 F0 F0 F0 F0

Fm F0 F0..m+n−1 Fm F0..m+n F0..m F0..m+n F0..m F0..m+n

T0 F0 Fn T0 Tn ↑0 ↑n ↓0 ↓n

Tm F0 F0..m+n Tm T1..m+n ↑0..m ↑0..m+n ↓m ↓0..m+n

↑0 F0 F0..n ↑0 ↑0..n ↑0 ↑0..n F0..1 F0..n+1

↑m F0 F0..m+n ↑m ↑0..m+n ↑0..m ↑0..m+n F0..m+1 F0..m+n+1

↓0 F0 F0..n ↓0 ↓n F0..1 F0..n+1 ↓0 ↓0..n

↓m F0 F0..m+n ↓m ↓0..m+n F0..m+1 F0..m+n+1 ↓0..m ↓0..m+n

∨] F0 Fn T0 Tn ↑0 ↑n ↓0 ↓n

F0 F0 Fn T0 Tn ↑0 ↑n ↓0 ↓n

Fm Fm F1..m+n T0 T0..m+n ↑0..m ↑0..m+n ↓0..m ↓0..m+n

T0 T0 T0 T0 T0 T0 T0 T0 T0

Tm Tm T0..m+n T0 T0..m+n−1 T0..m T0..m+n−1 T0..m T0..m+n−1

↑0 ↑0 ↑0..n T0 T0..n ↑0 ↑0..n T0..1 T0..n+1

↑m ↑m ↑0..m+n T0 T0..m+n−1 ↑0..m ↑0..m+n T0..m+1 T0..m+n+1

↓0 ↓0 ↓0..n T0 T0..n T0..1 T0..n+1 ↓0 ↓0..n

↓m ↓m ↓0..m+n T0 T0..m+n−1 T0..m+1 T0..m+n+1 ↓0..m ↓0..m+n

¬]

F0 T0

Fn Tn

T0 F0

Tn Fn

↑0 ↓0

↑n ↓n

↓0 ↑0

↓n ↑n

∆]

F0 F0

Fn Fn

T0 T0

Tn Tn

↑0 ↑0

↑n ↑n

↓0 ↓0

↓n ↓n

�]

F0 F0

Fn F0..n

T0 T0

Tn T0..n

↑0 ↑0

↑n ↑0..n

↓0 ↓0

↓n ↓0..n

where m > 0, n > 0.

Fig. 5. Boolean Functions on Traces
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4 Circuits

Definition 4.1 Circuits are modelled by composing four basic operators: zero
delay ‘and’ ∧, zero delay ‘not’ ¬, transmission line delay ∆ and inertial delay
�, which are defined on the concrete domain as follows:

∧
def
= λ(ŝ1, ŝ2).{λτ.s1(τ) ∧ s2(τ) | s1 ∈ ŝ1 ∧ s2 ∈ ŝ2}

¬
def
= λŝ.{λτ.¬s(τ) | s ∈ ŝ}

∆
def
= γ ◦ α

�
def
= γ ◦ �] ◦ α

Their abstract counterparts are defined as follows:

∧] def
= α ◦ ∧ ◦ 〈γ, γ〉

¬] def
= α ◦ ¬ ◦ γ

∆] def
= λx.x

�] def
= λt̂.{t ∈ T | ∃t′ ∈ t̂.Val(t) = Val(t′) ∧ Subs(t) ≤ Subs(t′)}

where Val : T → {F, T, ↑, ↓} and Subs : T → N are defined as follows:

Val(Xn)
def
= X Subs(Xn)

def
= n

Note that defining � in terms of α, γ and �] is unusual, though convenient.

And. The function ∧ : ℘(S) × ℘(S) → ℘(S) represents a perfect zero-delay
AND gate. Its abstract counterpart, ∧] : ℘(T) × ℘(T) → ℘(T), is defined in
terms of ∧ by composition with α and γ; note that our semantics is based
upon an independent attribute model [13].

Or. The function ∨ : ℘(S) × ℘(S) → ℘(S) represents a perfect zero-delay
OR gate. Since it can be defined in terms of ∧, ¬ and de Morgan’s law, i.e.

a ∨ b
def
= ¬(¬a ∧ ¬b), for the purposes of this paper we do not consider ∨ as

a basic operator. Where space allows, ∨ is tabulated fully, though it is not
otherwise discussed.

Not. The bijective function ¬ : ℘(S) → ℘(S) represents a perfect zero delay
NOT gate. As with ∧, we define ¬] : ℘(T) → ℘(T) by composition of the
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concrete operator ¬ with α and γ. When tabulated, ∧] and ¬] behave as
shown in Fig. 5.

Transmission line (non-inertial) delay. Our definition of transmission
line delay is essentially a superset of all possible delay functions that preserve
the underlying trace structure of the signal. The definition, γ ◦ α, captures
this behaviour straightforwardly; the α function abstracts away all details of
time, though preserves transitions and the values at the beginning and end
of time, then γ concretises this, resulting in the set of all possible traces with
similar structure. This definition is more permissive than more typical notions
of delay in that it includes negative as well as positive time shifts as well as
transformations that can stretch or compress (though not remove or reorder)
pulses.

Inertial delay. Inertial delay is broadly similar to transmission line delay,
in that, as well as changing the time at which transitions may occur, one or
more complete pulses (i.e. pairs of adjacent transitions) may be removed. This
models a common property of some physical components, whereby very short
pulses are ‘soaked up’ by internal capacitance and/or inductance and thereby
not passed on. We model inertial delay in the abstract domain – in effect,
nondeterministic traces are mapped to convex hulls of the form F0..a | T0..b |
↑0..c | ↓0..d. The concrete inertial delay operator � is defined in terms of �] by
composition with γ and α, so as with transmission line delay, it encompasses
all possible inertial delay functions. It can be noted that, for all ŝ ∈ ℘(S),
∆ŝ ⊆ �ŝ.

Circuit Symbols As shown in Fig. 3, we adopt standard electronic engi-
neering notation for the perfect gates ∧, ∨ and ¬. Note that we adopt slight
variations on the usual symbol for delay in order to distinguish inertial delay
� from transmission line delay ∆.

4.1 Soundness and Completeness

An abstract function f ] may be described as sound with respect to a con-
crete function f if all behaviours exhibited by f are within the set of possible
behaviours predicted by f ]. Where these sets are identical (i.e. where f ] pre-
dicts all possible behaviours of f), completeness holds [9–11,8,18], two forms
of which are defined below.
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Original
signal

Some possible 
delayed signals 

(Negative delays 
are allowed)

Time

Fig. 6. Transmission line delay

Original
signal

Some possible 
delayed signals 

(Pulses may be 
removed but not 

added)

Time

Fig. 7. Inertial delay

Definition 4.2 Given a concrete domain D and an abstract domain D], re-
lated by adjoint functions 〈α, γ〉 that form a Galois connection (i.e. α◦γ(x) v x
and γ ◦ α(x) w x), a pair of functions f : D → D and f ] : D] → D] may be
said to be sound iff the following (equivalent) relations hold:

α ◦ f v f ] ◦ α f ◦ γ v γ ◦ f ]

Definition 4.3 Let f ]
best

def
= α ◦ f ◦ γ.

Definition 4.4 When f ] = f ]
best and f◦γ = γ◦f ], the property γ-completeness

holds.

Definition 4.5 When f ] = f ]
best and α◦f = f ]◦α, the property α-completeness

holds.

Note that α-completeness and γ-completeness are orthogonal properties; nei-
ther implies the other, though if either or both kinds of completeness hold,
soundness must also hold.
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Theorem 2 The transmission line delay operator (∆, ∆]) is sound, α-complete
and γ-complete. Proof:

(1) ∆]
best = α ◦ ∆ ◦ γ = α ◦ γ ◦ α ◦ γ = α ◦ γ = (λx.x) = ∆].

(2) α-completeness: α ◦ ∆ = α ◦ γ ◦ α = α = (λx.x) ◦ α = ∆] ◦ α.
(3) γ-completeness: ∆ ◦ γ = γ ◦ α ◦ γ = γ = γ ◦ (λx.x) = γ ◦ ∆].

Theorem 3 The inertial delay operator (�,�]) is sound, α-complete and γ-
complete. Proof:

(1) �
]
best = α ◦ � ◦ γ = α ◦ γ ◦ �] ◦ α ◦ γ = �].

(2) α-completeness: α ◦ � = α ◦ γ ◦ �] ◦ α = �] ◦ α.
(3) γ-completeness: � ◦ γ = γ ◦ �] ◦ α ◦ γ = γ ◦ �].

Theorem 4 The perfect NOT operator (¬,¬]) is sound, α-complete and γ-
complete. Proof:

(1) ¬]
best = α ◦ ¬ ◦ γ = ¬].

(2) Since ¬ is a bijection, γ ◦ α ◦ ¬ = ¬ ◦ γ ◦ α.
(3) α-completeness: α ◦ ¬ = α ◦ γ ◦ α ◦ ¬ = α ◦ ¬ ◦ γ ◦ α = ¬] ◦ α.
(4) γ-completeness: ¬ ◦ γ = ¬ ◦ γ ◦ α ◦ γ = γ ◦ α ◦ ¬ ◦ γ = γ ◦ ¬].

Theorem 5 The perfect AND operator (∧,∧]) is sound 7 . Proof:

(1) ∧ ◦ 〈γ, γ〉 ⊆ γ ◦ ∧] = γ ◦ α ◦ ∧ ◦ 〈γ, γ〉.

Note that whilst perfect, zero delay AND is sound but not complete, a com-

posite speed-insensitive AND (∧SI
def
= ∆ ◦ ∧,∧]

SI

def
= ∆] ◦ ∧]) can be straight-

forwardly be shown to be γ-complete, but not α-complete. Dually, delay-

independent AND (∧DI
def
= ∧ ◦ 〈∆, ∆〉,∧]

DI

def
= ∧] ◦ 〈∆], ∆]〉) is α- but not

γ-complete. We find, however, that (∧complete
def
= ∆ ◦ ∧ ◦ 〈∆, ∆〉,∧]

complete

def
=

∆] ◦ ∧] ◦ 〈∆], ∆]〉) is both α- and γ-complete.

5 Finite Versions of the Abstract Domain

The abstract domain defined in Section 3 allows arbitrary asynchronous com-
binational circuits to be reasoned about. In this section we present a number
of simplifications of this basic model which allow accuracy to be traded off
against levels of abstraction. The model presented in Section 3 is useful in
identifying possible glitches within circuits, though in this case generally one

7 Note that we adopt an independent attribute model when considering the dyadic
nature of AND.
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is interested in whether a particular signal can glitch, rather than the num-
ber of possible glitches – this requires less information than that captured by
our original abstraction. It follows that further abstraction should be possible,
which is indeed the case.

5.1 Collapsing Non-Zero Subscripts: the 256-value Transitional Logic T256

Mapping all non-zero subscript traces t ∈ X1..∞ to the single abstract value
X+, for X ranging over {F, T, ↑, ↓}, makes it possible to define a finite abstract
domain with a Galois connection to T. This domain has the desirable property
of abstracting away details of ‘how glitchy’ a trace may be, whilst retaining
the ability to distinguish clean traces from dirty traces.

Definition 5.1 The abstract domain of subscript-collapsed deterministic traces

is the set Tc
def
= {F0, F+, T0, T+, ↑0, ↑+, ↓0, ↓+}. Following the usual conven-

tion, the corresponding abstract domain of subscript-collapsed nondeterminis-

tic traces is the set T256
def
= ℘(Tc).

Note that unlike T and ℘(T), both Tc and ℘(Tc) are finite sets, with 8 and
256 members respectively.

Definition 5.2 The Galois connection αc : ℘(T) → ℘(Tc), γc : ℘(Tc) → ℘(T)
is defined as follows:

βc Xn
def
=







X0 iff n = 0;

X+ otherwise.

αct̂
def
= {βct | t ∈ t̂} γct̂

def
= {t ∈ T | βct ∈ t̂}

It is possible to tabulate 256× 256 truth tables that fully enumerate all mem-
bers of T256 along their edges, but they are too large to reproduce here in full.
For brevity, Fig. 8 defines the operators ¬c : Tc → ℘(Tc), ∆c : Tc → ℘(Tc),
�c : Tc → ℘(Tc) and ∧c : Tc×Tc → ℘(Tc) on Tc. Their fully nondeterministic
versions, defined on ℘(Tc), are as follows:

¬ct̂
def
=

⋃

t∈t̂

{¬ct} ∆ct̂
def
=

⋃

t∈t̂

{∆ct} �ct̂
def
=

⋃

t∈t̂

{�ct} t̂ ∧c û
def
=

⋃

t∈t̂
u∈û

{t ∧c u}

Note that, as with ∆], the ∆c operator is merely an identity function.
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∧c F0 F+ T0 T+ ↑0 ↑+ ↓0 ↓+

F0 F0 F0 F0 F0 F0 F0 F0 F0

F+ F0 F? F+ F? F? F? F? F?

T0 F0 F+ T0 T+ ↑0 ↑+ ↓0 ↓+

T+ F0 F? T+ T+ F? ↑? ↓+ ↓?

↑0 F0 F? ↑0 ↑? ↑0 ↑? F? F?

↑+ F0 F? ↑+ ↑? ↑? ↑? F? F?

↓0 F0 F? ↓0 ↓+ F? F? ↓0 ↓?

↓+ F0 F? ↓+ ↓? F? F? ↓? ↓?

∨c F0 F+ T0 T+ ↑0 ↑+ ↓0 ↓+

F0 F0 F+ T0 T+ ↑0 ↑+ ↓0 ↓+

F+ F+ F+ T0 T? ↑? ↑? ↓? ↓?

T0 T0 T0 T0 T0 T0 T0 T0 T0

T+ T+ T? T0 T? T? T? T? T?

↑0 ↑0 ↑? T0 T? ↑0 ↑? T? T?

↑+ ↑+ ↑? T0 T? ↑? ↑? T? T?

↓0 ↓0 ↓? T0 T? T? T? ↓0 ↓?

↓+ ↓+ ↓? T0 T? T? T? ↓? ↓?

¬c

F0 T0

F+ T+

T0 F0

T+ F+

↑0 ↓0

↑+ ↓+

↓0 ↑0

↓+ ↑+

∆c

F0 F0

F+ F+

T0 T0

T+ T+

↑0 ↑0

↑+ ↑+

↓0 ↓0

↓+ ↓+

�c

F0 F0

F+ F?

T0 T0

T+ T?

↑0 ↑0

↑+ ↑?

↓0 ↓0

↓+ ↓?

where F?
def
= F0 | F+, T?

def
= T0 | T+, ↓?

def
= ↓0 | ↓+, ↑?

def
= ↑0 | ↑+

Fig. 8. Operators on Tc

6 Further Simplification of the Abstract Domain

A fully tabulated version of the ¬c, ∆c, �c and ∧c operators defined in Sec-
tion 5.1 can be regarded as a 256-value transitional logic, where the values are
the members of ℘(Tc). Such an approach still captures more nondeterminism
than is useful in for many applications. It is possible to further reduce the ab-
stract domain, replacing some nondeterministic choices with appropriate least
upper bound elements with respect to 〈℘(Tc),⊆〉. The hierarchy of domains
that results is shown in Fig. 9 – the relationship to 2-value Boolean logic B and
3-value ternary logic B3 is shown 8 (see also Appendix A.3). Note that since
B lacks an upper bound that corresponds with F, it is not possible to define
α : B3 → B (though γ : B → B3 can be trivially defined), so a Galois connec-
tion does not exist in that particular case. Following Cousot & Cousot [4,5],
the domain U, useless logic, containing only F, completes the lattice.

8 As with our other logics, we assume that F ⊆ F and T ⊆ F – some ternary logics
in the literature (notably Kleene’s) lack this formal requirement.
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where U
def
= {F}, B

def
= {0, 1}, B3

def
= B ∪ {F} = {0, 1,F}.

Fig. 9. Hierarchy of Domains

Finding the smallest lattice including {F0, F+, T0, T+, ↑0, ↑+, ↓0, ↓+} that is
closed under ∧c, and ¬c results in the 13-value transitional logic,

T13
def
= {F0, F+, F?, T0, T+, T?, ↑0, ↑+, ↑?, ↓0, ↓+, ↓?,F}

Though much smaller than ℘(Tc), this logic is equivalently useful for most
purposes – note that a special element needs to be explicitly included, F,
representing the least upper bound (top element) of the lattice.

In cases where it is important to know that a trace is definitely clean, but where
it is not necessary to distinguish between ‘definitely dirty’ and ‘possibly dirty’,
further reducing the domain by folding F+, T+, ↑+ and ↓+ into their respective
least upper bounds F?, T?, ↑? and ↓? results in a 9-value transitional logic,

T9
def
= {F0, F?, T0, T?, ↑0, ↑?, ↓0, ↓?,F}. An even simpler 5-value transitional

logic T5
def
= {F, T, ↑, ↓,F} results from folding all remaining nondeterminism

into F. T13 and T9 are well suited to logic simulation, refinement and model
checking, whereas T5 is only recommended for glitch checking. The truth tables
for T13, T9 and T5 are shown in Appendix A.1.

6.1 Static/Clean Logics

The T13, T9 and T5 logics can be usefully extended by introducing two extra
upper bounds: S, the least upper bound of traces whose values are fixed for
all time, and C, the least upper bound of traces that may transition, but that
never glitch. We adopt the notation Tn to represent a static/clean logic with
n values.

Definition 6.1 With respect to ℘(Tc), the least upper bounds S, C and F

are as follows:

S
def
= {F0, T0} C

def
= {F0, T0, ↑0, ↓0}

F
def
= {F0, F+, T0, T+, ↑0, ↑+, ↓0, ↓+}
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The resulting static/clean transitional logics T15
def
= T13 ∪ {S, C}, T11

def
= T9 ∪

{S, C} and T7
def
= T5 ∪ {S, C} have applications in the design rule checking of

‘impure’ synchronous circuits. For example, in order to ensure that the clock
input of a D-type flip flop can never glitch, a signal generated by the circuit
S ∧ C = C might be accepted by a model checker, but C ∧ C = F would not.

Removing ↑ and ↓ from T7 results in a 5-value static/clean logic T5
def
= {F, T, S, C,F}

capable of reasoning about gated clock synchronous circuits; an even simpler

(though less accurate) 3-value static/clean logic T3
def
= {S, C,F} results from

also removing F and T.

The truth tables for these logics are shown in Appendix A.2.

7 Refinement and Equivalence in Transitional Logics

Hardware engineers are frequently concerned with modification and optimi-
sation of existing circuits, so it is appropriate to support this by defining
equivalence and refinement with respect to our abstract domains. Refinement
relationships between circuits are analogous to concepts of refinement in pro-
cess calculi, and may similarly be used to aid provably correct design. For
example, the Boolean equivalence a ∧ ¬a = F is not a strong equivalence in
many of our models, nor is it a weak equivalence – it actually turns out to be a
(left-to-right) refinement, i.e. a ∧ ¬a < F0, reflecting the ‘engineer’s intuition’
that it is safe to replace a ∧ ¬a with F0, but that the converse could damage
the functionality of the circuit by introducing new glitch states that were not
present in the original design. Such refinement rules are also known as hazard
non-increasing transformations in the asynchronous design literature [16].

Informally, if the deterministic trace u ∈ T refines (i.e. retains the steady state
behaviour of, but is no more glitchy than) trace t ∈ T, this may be denoted
t < u.

Definition 7.1 Given a pair of traces t ∈ T and u ∈ T,

t < u
def
≡ Val(t) = Val(u) ∧ Subs(t) ≥ Subs(u)

For example, F1 < F0, T3 < T2, ↑5 < ↑5, but ↓0 and ↑1 are incomparable.
Where t ∈ T and u ∈ T, if t < u and u < t, it follows that t = u.

Refinement and equivalence for nondeterministic traces is slightly less straight-
forward, in that it is necessary to handle cases like ↓1|3|5 < ↓0|2|4. To make these
comparable, we construct convex hulls of the form X0..n enclosing the nonde-
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terministic choices, so the above case becomes equivalent to ↓0..5 < ↓0..4. In
effect, this approach compares worst-case behaviour, disregarding finer detail;
in practice, since ∧, ∆, � and ¬ typically return results of the general form
X0..n anyway, this tends not to cause any practical difficulties. Less permissive
definitions of refinement, e.g. t̂ <strict û ≡ ∀t ∈ t̂ . ∀u ∈ û . t < u, often dis-
allow too many possible optimisations that in practice are quite acceptable –
our model better reflects the engineer’s intuition that ‘less glitchy is better,’
but that very detailed information about the structure of possible glitches is
generally not important.

Definition 7.2 Where t̂ ∈ ℘(T) and û ∈ ℘(T),

t̂ < û
def
≡ (∀t ∈ t̂, u ∈ û . Val(t) = Val(u)) ∧ MaxSubs(t̂ ) ≥ MaxSubs(û)

where MaxSubs(t̂)
def
= maxt∈t̂ Subs(t) is a function returning the largest sub-

script of a nondeterministic trace.

Equivalence of Nondeterministic Traces.

Given t̂ ∈ ℘(T) and û ∈ ℘(T), if t̂ = û then the traces are strongly equivalent ,
i.e. they represent exactly the same sets of nondeterministic choices. If the
convex hulls surrounding t̂ and û are identical, as is the case when t̂ < û∧ û <

t̂, the traces may be said to be weakly equivalent, denoted t̂ l û. Where
t̂ < û ∨ û < t̂, the traces are comparable, denoted t̂ m û.

Finite Abstract Domains

Refinement and equivalence can also be defined for the finite abstract domain
T256 and some of its simplified forms. Since T256 is implicitly nondeterministic,
we do not need to consider the deterministic case.

Definition 7.3 Given traces t ∈ T256 and u ∈ T256,

t < u
def
≡ Val(t) = Val(u) ∧ (Subs(t) = Subs(u) ∨ Subs(u) = 0)

t l u
def
≡ t < u ∧ u < t ≡ t = u

t m u
def
≡ t < u ∨ u < t ≡ Val(t) = Val(u)
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8 Related Work

There seems to be relatively little work reported in the literature regarding
the application of modern program analysis techniques to hardware. Indeed
hardware analyses seem to have been developed the same one-at-a-time man-
ner as software analyses before the advent of unifying frameworks such as
Monotone Data Flow Frameworks [14], Kildall’s ‘Unified Approach to Global
Program Optimization’ [15] and Abstract Interpretation [4] which significantly
increased the development of software analyses.

8.1 Achronous Analyses

The works in this section all make the achrony assumption which we make
in considering signals on wires to be values in ℘(T) and hence re-appear as
instances of our framework.

Janusz Brzozowski’s algebra of transients [1,2] has many similarities to our
transitional logic ℘(T). Values in the algebra of transients are analogous to
the upper bounds of convex hulls of the form X0..n in our notation. Similar
correctness results to our own are reported, achieved instead through different
mathematical techniques. Interestingly, some reduced forms of the algebra of
transients turn out to be identical to some of our reduced forms – however, our
logics including ‘definitely dirty’ (X+) values and/or S and C values do not
appear to have equivalent representations, perhaps due to our finer grained
model of nondeterminism.

David S. Kung defines a hazard-non-increasing gate-level optimisation algo-
rithm [16] based partly upon a multi-value logic that closely resembles our
transitional logic T9, though his theoretical justification appears to be some-
what inconsistent. His 9 values, 1, 0, ↑, ↓, S0 , S1 ,D+,D− and ∗ are defined
equivalently to our T, F, ↑0, ↓0, F+, T+, ↑+, ↓+ and F, though more accurately
they should be seen as equivalent to T, F, ↑0, ↓0, F?, T?, ↑?, ↓? and F. The 9
values are claimed to partition possible waveforms into disjoint equivalence
classes 9 , and a separate < operator is given that defines a Hasse ordering
over the values. Though Kung’s justification appears to have some problems,
his results as regards hazard-non-increasing extensions are likely to be correct

9 Kung’s definition is inconsistent – since the values 1, 0, ↑, ↓,S0 ,S1 ,D+,D− cover
all possible waveforms, ∗ must be an empty set in order for the logic’s 9 values to
be disjoint, though informally it is stated to mean ‘any value at all’. This problem
can be avoided (as in our definition) by abandoning a requirement for disjointness
and defining the Hasse ordering in terms of subset inclusion, i.e. 0 ⊆ S0 ⊆ ∗, 1 ⊆
S1 ⊆ ∗, ↑ ⊆ D+ ⊆ ∗ and ↓ ⊆ D− ⊆ ∗.
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as a consequence of the similarity of his logic to T9.

Don Gaubatz [7] proposes a 4-value ‘quaternary’ logic (see Appendix A.3)
that, extended slightly to allow operators to be represented as total functions,
is equivalent to our T5 (see Appendix A.1).

8.2 Non-Achronous Analyses

Paul Cunningham [6] extends Gaubatz’s work in many respects, though his
formalism is based on a conventional 2-value logic with transitions handled
explicitly as events rather than as values in an extended logic.

Jerry R. Burch’s binary chaos delay model [3] underlies a method for verifying
speed-dependent asynchronous circuits. Though aimed at a different design
paradigm (we primarily consider speed- and delay-independent circuits), his
technique’s adoption of an underlying dense time model presents an interest-
ing contrast to our approach, particularly in that it allows absolute timing
information to be exploited. Burch’s model is more abstract than our concrete
domain ℘(S) and more concrete (as a consequence of taking into account
absolute time) than our most accurate abstract domain ℘(T), though the ap-
proaches are sufficiently different that neither subsumes the other.

8.3 Synchronous Analyses

Most existing work in hardware analysis is aimed at synchronous circuits and
as-such is beyond the scope of this paper, since we mainly consider asyn-
chronous circuits. It is, however, noteworthy that Charles Hymans [12] uses
abstract interpretation to present a safety property checking technique based
upon abstract interpretation of (synchronous) behavioural VHDL specifica-
tions.

9 Conclusions

In this paper, we have presented a technique based upon the solid foundation
of abstract interpretation [4,5] that allows properties of a wide class of digital
circuits to be reasoned about. We describe what is essentially a first attempt
at applying abstract interpretation to asynchronous hardware – clearly more
can be done, particularly in exploring completeness.
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9.1 Future Work

In Section 7, we define refinement and equivalence relations on circuits. It ap-
pears to be possible to generalise this definition of refinement and equivalence
to any abstract domain that is itself amenable to abstract interpretation. We
have already demonstrated that our technique is potentially useful for logic
simulation [19] – implementing a demonstrable simulator is a logical next step.

In terms of capturing more analyses and their interrelationships within the
abstract interpretation framework, it is desirable to be able to express limited
timing knowledge à la Burch [3] within a non-achronous abstract model that
sits somewhere between our existing ℘(S) and ℘(T).

A prototype implementation exists of a proof system for the 11-value clean/static
transitional logic, and we hope to extend this to cover the more general case,
℘(T).
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A Appendix: Extended Logics

A.1 Transitional Logics

Note that for reasons of brevity tables for ∨ are omitted for some of the larger
logics in this appendix; all however obey de Morgan’s law, so ¬ and ∧ are
sufficient to completely derive ∨ in such cases.

5-value (T5)

¬

F T

T F

↑ ↓

↓ ↑

F F

∧ F T ↑ ↓ F

F F F F F F

T F T ↑ ↓ F

↑ F ↑ ↑ F F

↓ F ↓ F ↓ F

F F F F F F

∨ F T ↑ ↓ F

F F T ↑ ↓ F

T T T T T T

↑ ↑ T ↑ F F

↓ ↓ T F ↓ F

F F T F F F

9-value (T9)

¬

F0 T0

F? T?

T0 F0

T? F?

↑0 ↓0

↑? ↓?

↓0 ↑0

↓? ↑?

F F

∧ F0 F? T0 T? ↑0 ↑? ↓0 ↓? F

F0 F0 F0 F0 F0 F0 F0 F0 F0 F0

F? F0 F? F? F? F? F? F? F? F?

T0 F0 F? T0 T? ↑0 ↑? ↓0 ↓? F

T? F0 F? T? T? ↑? ↑? ↓? ↓? F

↑0 F0 F? ↑0 ↑? ↑0 ↑? F? F? F

↑? F0 F? ↑? ↑? ↑? ↑? F? F? F

↓0 F0 F? ↓0 ↓? F? F? ↓0 ↓? F

↓? F0 F? ↓? ↓? F? F? ↓? ↓? F

F F0 F? F F F F F F F

∨ F0 F? T0 T? ↑0 ↑? ↓0 ↓? F

F0 F0 F? T0 T? ↑0 ↑? ↓0 ↓? F

F? F? F? T0 T? ↑? ↑? ↓? ↓? F

T0 T0 T0 T0 T0 T0 T0 T0 T0 T0

T? T? T? T0 T? T? T? T? T? T?

↑0 ↑0 ↑? T0 T? ↑0 ↑? T? T? F

↑? ↑? ↑? T0 T? ↑? ↑? T? T? F

↓0 ↓0 ↓? T0 T? T? T? ↓0 ↓? F

↓? ↓? ↓? T0 T? T? T? ↓? ↓? F

F F F T0 T? F F F F F
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13-value (T13)

¬

F0 T0

F+ T+

F? T?

T0 F0

T+ F+

T? F?

↑0 ↓0

↑+ ↓+

↑? ↓?

↓0 ↑0

↓+ ↑+

↓? ↑?

F F

∧ F0 F+ F? T0 T+ T? ↑0 ↑+ ↑? ↓0 ↓+ ↓? F

F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0

F+ F0 F? F? F? F? F? F? F? F? F? F? F? F?

F? F0 F? F? F? F? F? F? F? F? F? F? F? F?

T0 F0 F? F? T0 T+ T? ↑0 ↑+ ↑? ↓0 ↓+ ↓? F

T+ F0 F? F? T+ T? T? ↑? ↑? ↑? ↓? ↓? ↓? F

T? F0 F? F? T? T? T? ↑? ↑? ↑? ↓? ↓? ↓? F

↑0 F0 F? F? ↑0 ↑? ↑? ↑0 ↑? ↑? F? F? F? F

↑+ F0 F? F? ↑+ ↑? ↑? ↑? ↑? ↑? F? F? F? F

↑? F0 F? F? ↑? ↑? ↑? ↑? ↑? ↑? F? F? F? F

↓0 F0 F? F? ↓0 ↓? ↓? F? F? F? ↓0 ↓? ↓? F

↓+ F0 F? F? ↓+ ↓? ↓? F? F? F? ↓? ↓? ↓? F

↓? F0 F? F? ↓? ↓? ↓? F? F? F? ↓? ↓? ↓? F

F F0 F? F? F F F F F F F F F F

A.2 Static/Clean Logics

Logics in this section marked * are also transitional, due to their inclusion of
↑ and ↓ states.

3-value (T3)

¬

C C

S S

F F

∧ C S F

C F C F

S C S F

F F F F

∨ C S F

C F C F

S C S F

F F F F

5-value (T5)

¬

F T

T F

C C

S S

F F

∧ F T C S F

F F F F F F

T F T C S F

C F C F C F

S F S C S F

F F F F F F

∨ F T C S F

F F T C S F

T T T T T T

C C T F C F

S S T C S F

F F T F F F
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7-value* (T7)

¬

F T

T F

↑ ↓

↓ ↑

C C

S S

F F

∧ F T ↑ ↓ C S F

F F F F F F F F

T F T ↑ ↓ C S F

↑ F ↑ ↑ F F F F

↓ F ↓ F ↓ F F F

C F C F F F C F

S F S F F C S F

F F F F F F F F

∨ F T ↑ ↓ C S F

F F T ↑ ↓ C S F

T T T T T T T T

↑ ↑ T ↑ F F F F

↓ ↓ T F ↓ F F F

C C T F F F C F

S S T F F C S F

F F T F F F F F

11-value* (T11)

¬

F0 T0

F? T?

T0 F0

T? F?

↑0 ↓0

↑? ↓?

↓0 ↑0

↓? ↑?

C C

S S

F F

∧ F0 F? T0 T? ↑0 ↑? ↓0 ↓? C S F

F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0

F? F0 F? F? F? F? F? F? F? F? F? F?

T0 F0 F? T0 T? ↑0 ↑? ↓0 ↓? C S F

T? F0 F? T? T? ↑? ↑? ↓? ↓? F F F

↑0 F0 F? ↑0 ↑? ↑0 ↑? F? F? F F F

↑? F0 F? ↑? ↑? ↑? ↑? F? F? F F F

↓0 F0 F? ↓0 ↓? F? F? ↓0 ↓? F F F

↓? F0 F? ↓? ↓? F? F? ↓? ↓? F F F

C F0 F? C F F F F F F C F

S F0 F? S F F F F F C S F

F F0 F? F F F F F F F F F

15-value* (T15)

¬

F0 T0

F+ T+

F? T?

T0 F0

T+ F+

T? F?

↑0 ↓0

↑+ ↓+

↑? ↓?

↓0 ↑0

↓+ ↑+

↓? ↑?

C C

S S

F F

∧ F0 F+ F? T0 T+ T? ↑0 ↑+ ↑? ↓0 ↓+ ↓? C S F

F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0

F+ F0 F? F? F? F? F? F? F? F? F? F? F? F? F? F?

F? F0 F? F? F? F? F? F? F? F? F? F? F? F? F? F?

T0 F0 F? F? T0 T+ T? ↑0 ↑+ ↑? ↓0 ↓+ ↓? C S F

T+ F0 F? F? T+ T? T? ↑? ↑? ↑? ↓? ↓? ↓? F F F

T? F0 F? F? T? T? T? ↑? ↑? ↑? ↓? ↓? ↓? F F F

↑0 F0 F? F? ↑0 ↑? ↑? ↑0 ↑? ↑? F? F? F? F F F

↑+ F0 F? F? ↑+ ↑? ↑? ↑? ↑? ↑? F? F? F? F F F

↑? F0 F? F? ↑? ↑? ↑? ↑? ↑? ↑? F? F? F? F F F

↓0 F0 F? F? ↓0 ↓? ↓? F? F? F? ↓0 ↓? ↓? F F F

↓+ F0 F? F? ↓+ ↓? ↓? F? F? F? ↓? ↓? ↓? F F F

↓? F0 F? F? ↓? ↓? ↓? F? F? F? ↓? ↓? ↓? F F F

C F0 F? F? C F F F F F F F F F C F

S F0 F? F? S F F F F F F F F C S F

F F0 F? F? F F F F F F F F F F F F

30



A.3 Logics from Related Work

Boolean logic (B)

¬

F T

T F

∧ F T

F F F

T F T

∨ F T

F F T

T T T

Ternary logic (B3)

¬

F T

T F

F F

∧ F T F

F F F F

T F T F

F F F F

∨ F T F

F F T F

T T T T

F F T F

Quaternary logic

¬

F T

T F

↑ ↓

↓ ↑

∧ F T ↑ ↓

F F F F F

T F T ↑ ↓

↑ F ↑ ↑ F

↓ F ↓ F ↓

∨ F T ↑ ↓

F F T ↑ ↓

T T T T T

↑ ↑ T ↑ F

↓ ↓ T F ↓
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